La cerise sur le gâteau

Si le thorium est si prometteur, pourquoi la France ne le fait pas ?

En novembre, le CEA a publié un article sur son site pour expliquer aux jeunes l’essentiel sur… une filière nucléaire au thorium.

Cliquez sur l'image pour l'article

Cet article entre directement dans le vif du sujet :

« le développement de réacteurs utilisant le thorium ne présente pas d’intérêt technico-économique sur le court ou le moyen terme ».

Et si c’est le CEA qui le dit, ils ont forcément raison. Donc voilà, pour tous les jeunes qui voyaient un nouvel espoir pour le climat et l’industrie nucléaire française, le débat est clos.

Mais attendez, lisons jusqu’au bout :

« LE THORIUM EST ENVIRON QUATRE FOIS PLUS ABONDANT QUE L’URANIUM »

– oui, effectivement.

« POUR AMORCER UN RÉACTEUR AU THORIUM, IL FAUT DE L’URANIUM »

– ouais, ou bien du plutonium, ou un mélange d’actinides mineurs.

« L’UTILISATION DU THORIUM REQUERRAIT DEUX FILIÈRES DISTINCTES »

– ah bon ? Attendez, qu’est-ce qu’ils disent là ?

« Le retraitement des combustibles usés au thorium … nécessite le développement … d’un procédé spécifique (procédé thorex) »

Ah oui ! mais ils parlent des combustibles SOLIDES !!! c’est ça en fait, la traduction de « sur le court ou le moyen terme ». Et il faut aller jusqu’à la dernière phrase du dernier paragraphe pour lire que :

« Le développement de réacteurs à sel fondu utilisant du thorium est étudié par le CNRS. »

Pas par le CEA ! Dommage, car c’est bien la transition de combustibles solides à des combustibles LIQUIDES qui peut amener une véritable révolution dans l’industrie nucléaire.

Cerise

Il est vrai que le thorium n’est pas une panacée. On peut très bien faire fonctionner un réacteur à sels fondus avec de l’uranium, du plutonium ou même avec les « déchets » des réacteurs actuels.

Mais il est vrai aussi que le meilleur réacteur à sels fondus qu’on peut imaginer serait bien alimenté par du thorium.

Et c’est pour ça que les deux sont souvent cités ensemble. Mais la plupart des bénéfices viennent du changement d’état du combustible : solide –> liquide. Par exemple, dans un réacteur à sels fondus les produits de fission gazeux se séparent du combustible tout seuls. Ils forment des bulles dans le sel liquide et peuvent être extraits avec un bullage d’hélium – un principe démontré par le réacteur expérimental à sels fondus en 1965. Cet avantage considérable (comme d’autres) est impossible avec un combustible solide.

En tout cas, la France bénéficie d’une politique très claire sur les réacteurs à combustible liquide :

Peut pas

…qui est illustrée par cette courte vidéo (un extrait d’une vidéo SFEN sur les réacteurs de génération IV)

Hmmm. On comprend maintenant pourquoi dans l’article du CEA on parle d’un « intérêt potentiel à très long terme ».

Bien sûr qu’un réacteur comme ASTRID serait beaucoup plus durable qu’un réacteur à eau pressurisée, mais si l’énergie produite n’est pas moins chère que celle du charbon (et le gouvernement pense que « Il n’est cependant pas acquis aujourd’hui que les objectifs fixés puissent être atteints à un coût raisonnable.« ), il sera difficile de convaincre les gens, en France et à l’étranger, de faire le saut de fossile à fissile. La Chine et le Canada ont compris les avantages des réacteurs à sels fondus. Seront-ils les futurs rois de la #FissionLiquide ?

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Maquette du réacteur ASTRID sur le stand CEA du World Nuclear Exhibition, Le Bourget, octobre 2014

Il est vrai que la France a un grand retour d’expérience avec les réacteurs à combustible solide refroidis par l’eau ou le sodium. Il est vrai que développer une nouvelle technologie, très différente de l’actuelle, est quelque chose de difficile. Mais ce n’est pas parce que c’est difficile qu’il ne faut pas le faire.

Enlevons les oeillères – dans la quête d’une planète à l’énergie abondante et au climat stable, il faut investir dans les solutions à réel potentiel. Espérons que les jeunes seront plus ouverts à l’innovation que le CEA.

2014 – une année chaude

L’année 2014 se classe comme la plus chaude sur la Terre depuis 1880, selon deux analyses distinctes par des scientifiques de la NASA et la National Oceanic and Atmospheric Administration (NOAA). 2014_températures_couleur Les dix années les plus chaudes dans les relevés instrumentaux, à l’exception de 1998, ont maintenant eu lieu depuis 2000.  Le réchauffement à long terme de la planète est une tendance qui se poursuit, selon une analyse des mesures de température de surface par des scientifiques de l’Institut Goddard de la NASA d’Etudes Spatiales (GISS) à New York. Dans une analyse indépendante des données brutes, également publiée vendredi, des scientifiques de la NOAA ont également trouvé que 2014 était l’année la plus chaude jamais enregistrée. NOAA températures Depuis 1880, la température moyenne à la surface de la Terre s’est réchauffée d’environ 0,8 degrés Celsius, une tendance qui est largement liée à l’augmentation du dioxyde de carbone et d’autres émissions anthropiques dans l’atmosphère de la planète. La majorité de ce réchauffement s’est produite dans les trois dernières décennies.

Beaucoup de personnes seront préoccupées par la confirmation de cette tendance, mais choisiront de l’ignorer, ne voyant aucune solution viable pour y remédier.

shadok-pasdeprobleme

Mais quand on découvre qu’il est possible de faire de l’énergie nucléaire avec des combustibles liquides, avec une technologie éprouvée qui permet une production fiable, moins chère que le charbon, intrinsèquement sûre, durable et propre, on a tendance à regarder le problème du réchauffement climatique de plus près – et à partager l’avis des climatologues : le réchauffement climatique représente le plus grand problème de l’humanité au 21ème siècle.

S’il y a un problème, c’est qu’il y a des solutions.

  • Utiliser moins d’énergie, c’est bien, mais ça ne permettra pas d’atteindre zéro émissions de CO2.
  • Produire de l’énergie avec des sources renouvelables, c’est bien aussi, mais ça ne permettra pas de produire les énormes quantités d’énergie nécessaires au fonctionnement d’une société moderne et prospère.
  • Entre les deux, il faut choisir : fossile ou fissile.

Pour aller vers un système d’énergie à zéro carbone, la fission s’impose. Mais pour la faire correctement et efficacement il est nécessaire, et urgent, de changer de technologie.

Si la France veut être sérieuse avec sa transition énergétique et se positionner comme acteur incontournable dans la lutte contre le réchauffement climatique, sa politique actuelle de « veille technologique » pour les réacteurs à sels fondus est totalement inadéquate.

Martingale conçoit des centrales nucléaires produites en masse

Martingale Inc. a révélé une approche audacieuse pour résoudre les problèmes mondiaux de pauvreté, pollution, sécurité énergétique et climat. La conception du réacteur nucléaire ThorCon à combustible liquide est détaillée sur le site thorconpower.com.

ThorCon

ThorCon est un système complet de modules de production d’énergie, avec entretien par échange et un service de combustible liquide, qui produit une énergie moins chère que le charbon. Jack Devanney, ingénieur en chef, a dirigé un projet « atelier des putois » de quatre ans qui a créé un nouveau type de centrale nucléaire, intégrant des technologies éprouvées avec des approches innovantes pour la fabrication et l’obtention de licences. La production pourrait commencer d’ici 2020. Martingale a publié sa conception pour une électricité bon marché, fiable et sans émission de CO2 sur thorconpower.com.

ThorCon est conçu par Martingale aux États-Unis, tout en ciblant des premières installations dans des pays tournés vers l’avenir, qui soutiennent une réglementation nucléaire neutre sur le plan technologique et qui voient les avantages du processus de licence par test. ThorCon ouvre la possibilité d’un approvisionnement d’énergie quasi illimité, de faible coût, fiable, et sans carbone d’ici 2020.

Nouveau réacteur à sels fondus au thorium – c’est parti !

SINAP - CNNC

La Compagnie Nucléaire Nationale Chinoise (CNNC) a signé un contrat d’ingénierie et de conception avec l’Institut de Shanghai de la Physique Appliquée (SINAP / CAS) pour le développement d’un réacteur à sels fondus avec le thorium comme combustible (TMSR), selon des informations de la CNNC relayées le 19/12/2014 par le site internet NucNet.

L’Institut réalisera des expériences sur les matériaux et fournira des dessins pour les boucles de refroidissement et les installations de traitement des déchets. Il créera également un plan de construction pour un projet de réacteur pilote de 10 mégawatts.

Le TMSR est un projet pilote majeur de science et de technologie lancé au début de 2014, la CNNC a dit.

Les énergies alternatives, avec 7PM Auto

Le site 7PM Auto a publié le 10 décembre 2014 une émission sur :

ENERGIES ALTERNATIVES ET CHUTE DU PÉTROLE : À QUOI ROULERA LA VOITURE DE DEMAIN ?

7PM-Auto

Cliquez sur l’image pour voir un extrait de l’émission

 

Présentée par Jean-François Rabilloud et Ali Hammami, cette émission a regroupé sur le plateau, Nicolas Meilhan (Frost & Sullivan), Véronique Saubot (Coronelli International), John Laurie (energieduthorium.fr) et Jean-Luc Ledys (SunPartner Technologies).

Dans les six dernières minutes de cette émission, John Laurie a parlé de la fission liquide, du thorium et de la voiture nucléaire.

L’émission complète est publiée sur le site 7PM Auto, ainsi qu’un extrait de 02:26 avec le titre « Décarbonons les carburants ! »

 

Nucléaire : l’impératif de l’innovation

Hugh MacDiarmid est un homme avec une mission.

L’ex PDG d’Energie Atomique du Canada Limité est maintenant président du conseil d’administration de Terrestrial Energy, l’entreprise créée fin 2012 à Ottowa pour créer et commercialiser leur technologie de Réacteur à Sels Fondus Intégral (RSFI).

Le 24 septembre 2014, il a prononcé un discours au prestigieux Club économique du Canada, avec le titre « Nucléaire : l’impératif de l’innovation ».

(vidéo sous-titrée en français)

Il est intéressant de lister quelques phrases clés de la traduction française de ce discours :

  • A Terrestrial Energy, je crois que nous avons quelque chose de spécial
  • Nous sommes confrontés à une croissance toujours plus élevée de la demande d’énergie.
  • L’innovation viendra sûrement et elle va créer une rupture.
  • Nous pensons que cet avenir pourrait arriver plus tôt que prévu.
  • Il n’y a pas assez de bonnes réponses dans la gamme existante de solutions d’approvisionnement.
  • Le réacteur à sels fondus intégral, le RSFI, pourrait être l’une des réponses à cette insuffisance de l’offre
  • C’est une opportunité formidable pour la communauté nucléaire au Canada.
  • Qu’est-ce qu’un réacteur à sels fondus et comment c’est différent ? De façon générique, c’est un système de réacteur qui utilise un combustible liquide. C’est une différence fondamentale. Tous les autres utilisent un combustible solide.
  • Il doit passer le test de la viabilité commerciale – et nous croyons que notre RSFI passe ce test.
  • La valeur en capital est largement récupérée sur la durée de vie de sept ans que nous estimons pour l’unité cœur du RSFI.
  • Nos estimations indiquent que le RSFI va démontrer un coût d’énergie sur durée de vie le plus bas de toute technologie connue, et par une certaine marge.
  • Le RSFI sera une machine beaucoup moins chère à construire et à exploiter – point.
  • Nous avons choisi le graphite comme modérateur.
  • Le RSFI répond à la définition acceptée d’un petit réacteur modulaire.
  • La consommation d’uranium par kilowatt-heure sera un sixième du nucléaire conventionnel.
  • Pour nous, le combustible nucléaire usé est une source d’énergie intéressante.
  • Le RSFI a une empreinte de déchets beaucoup plus petite, avec une durée relativement courte.
  • La température de sortie plus élevée ouvre de nombreuses nouvelles applications industrielles qui ne sont pas viables pour le nucléaire classique. Nous pensons que le marché de la chaleur industrielle pourrait devenir encore plus grand pour le RSFI que la production d’électricité.

Il est également instructif de découvrir sur le site internet de Terrestrial Energy le calibre et le niveau d’expérience de l’équipe dirigeante de cette entreprise.

Alors, qui sera le premier dans la course à la fission liquide ? La Chine ? Le Canada ? Le Royaume-Uni ? Ou un autre ? Et quand verrons-nous cette technologie en Europe ?